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Concepts from topology are increasingly finding utility in magnetohydrodynamics. This paper gives
an example of how the connectivity of the domain and the gauge freedom of the vector potential can
play an important role in computing the helicity of twisted magnetic fields used in several areas of astro-
physics, particularly solar physics. By computing the relative helicity of a simple magnetic field
configuration used to model solar prominences, it is shown that helicity can have a nonlocal character.
This necessitates a reexamination of its conventional physical interpretation. The magnetic energy is

also discussed.

PACS number(s): 52.30.Bt, 96.60.Se, 03.50.De

INTRODUCTION

The concept of the helicity of a magnetic field, and its
topological interpretation, was first introduced in a mag-
netohydrodynamical context by Moffat [1]. Since then it
has had a significant application in many areas of physics
including the magnetic configurations used to model
eruptive solar flares [2].

The helicity of a magnetic field can be expressed as

H=fVA-BdV. (1)

It is a constant of the motion of the equations of nondissi-
pative magnetohydrodynamics. Helicity can be identified
with the asymptotic Hopf invariant introduced by Ar-
nold [3], and defined by him as the mean value of the
asymptotic linking number of a pair of field lines. He
noted that if the field lines correspond to a unitary vector
field that is tangent to the Hopf bundle, the asymptotic
Hopf invariant and the classical Hopf invariant coincide.
The classical Hopf invariant [4] itself (see the Appendix)
was first shown to be expressible as a volume integral by
Whitehead [S]. The asymptotic Hopf invariant is applic-
able to cases where the magnetic field may have a compli-
cated topology and the field lines may not close (although
it should be noted that to define the asymptotic Hopf in-
variant Arnold introduces ‘“‘short curves” that do indeed
close the field lines, but he also shows that the asymptotic
linking number is independent of this family of short
curves).

Using a geometric invariant of a space curve, called the
writhing number [6], Berger and Field [7] decomposed
the helicity of a magnetic field into the sum of “twist”
and “kink” helicities and, based on the work of Fuller [8],
defined the helicity of open field structures. They made
use of a theorem [9] from knot theory [10] that states that
the linking number of two curves X and Y without com-
mon points can be written as the sum of the twist number
T,, and the writhing number Wy,

Lyy=Ty+Wg . (2)
This makes sense, for example, if one considers X and Y

to be the edges of a ribbon; the example given by Berger

47

and Field identifies X with the central axis of a flux rope
and Y with a field line winding about this axis. The topo-
logical interpretation of helicity in terms of the Gauss
linking number and its limiting form, the Cilugdreanu in-
variant, has been extensively discussed by Moffatt and
Ricca [11].

Moffat [12] has also noted that knotted flux tubes may
always be decomposed into two or more linked tubes.
Thus a flux tube twisted by 47 is equivalent to two linked
but untwisted flux tubes. This can be seen as follows:
Since the integrand in Eq. (1) can be written as
A-BdSdl = A-dl BdS, where dl is along the axis of the
flux tube, the helicity introduced by the twist is

Hy=a [ A-dl=207, (3)

where @ is the constant flux in the tube. Let the total
conserved helicity be given by the sum of the twist helici-
ty Hp, the kink helicity Hg, and the link helicity H; .
Following Berger and Field, the “twist” helicity can be
shared with a “kink” helicity [13] [Fig. 1(b)]. In Fig. 1(c)
the crossing is switched by introducing a link helicity,
and in Fig. 1(d) the kink is eliminated by straightening

(d) (c)

FIG. 1. The sequence of manipulations that exchange a twist
helicity of 2&? for a link helicity. (a) H;=2®? Hy =0, H;, =0;
(b) Hr=®% Hy=®> H; =0; () H;y=®? Hgx=-—o?
H; =2®%(d) H; =0, H, =0, H, =22,
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out the figure eight, leaving only a link helicity. One can
convince oneself of the validity of these exchanges by
playing with a piece of ribbon.

Physically, helicity has been interpreted as a measure
of the degree of linkage of the field lines. The example
given below is important because it illustrates that this
definition cannot be taken too literally. Helicity can be
nonlocalizable in the same sense that the magnetic energy
of a magnetostatic field is not localizable. It will be
shown that introducing a uniform twist in a previously
untwisted flux tube does not increase the helicity in the
flux tube itself, even though the field lines there are clear-
ly linked. Instead, the twist creates a link helicity. Phys-
ically this results from the fact that the twist creates an
axial current that is the source for a potential field that
links the flux tube, thus giving rise to the link helicity.

A UNIFORMLY TWISTED FLUX TUBE

Even though they are often used for heuristic purposes,
uniformly twisted flux tubes, where the Z and ¢ com-
ponents of the field are constant and no current is present,
cannot exist in nature. This is clear from the fact that an
axial current must be present since ﬁB-dl, where the in-
tegral is about the tube, does not vanish. Thus, twisted
flux loops will have currents present that will in general
give rise to additional magnetic fields that link the twist-
ed loop. An exception to this is the case where the axial
current is compensated by a return surface current. R

A uniformly twisted flux tube, albeit with the Z and ¢
components of the field decreasing monotonically with
increasing radius, does exist. It is force free [14] in the
sense that it satisfies

VXH=aH, 4)

where a is a scalar function of position. It is readily
verified that the field [15,16]

BO
" (1+r%/a?)

B,

B= |0,
(1+r2%/a?)

- , (s)
a

where a is a constant, satisfies Eq. (4) with a being given
by

2

-2 6
(42 ©

That the field is uniformly twisted can be seen from the
fact that B,/B,=r/a. If the angle 0 is defined with
respect to the z axis, tan0=B, /B, =rd¢/dz. Therefore,
the z distance traversed is z=a f d @, independent of r.

Note that the case of a constant axial field is given by
a—oo.

HELICITY OF THE UNIFORMLY
TWISTED FLUX TUBE

In order to compute the helicity of the magnetic field
given by Eq. (5), the vector potential must be determined.
By symmetry, A is not a function of ¢ or z and 4,=0.
B=V X A is readily integrated to give
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a
A,=——1In(a*+r?),

2r

B.a @)
Az—————;—ln(a2+r2)

The singular nature of these potentials is due to the fact
that the current density [related by Eq. (4) to the field] is
not constrained to a finite volume. Such singular poten-
tials often occur in magnetostatics [17].

If one computes the integrand of Eq. (1), it is found
that it vanishes since A-B=0. In fact, the vanishing of
the helicity does not require the explicit form of the po-
tential given by Egs. (7). The potential obtained by in-
tegrating B=V X A could be left in integral form and
subsequently used to show that 4,/4,=—a/r (which
means, incidently, that the distance along the z axis
traversed by A in one turn about the axis is independent
of r and is the same as that traversed by B). Since
B,/B,=r/a, A-B=(0,—4,a/r, 4,):(0,B,r/a,B,)=0.
Yet the field lines are clearly linked and therefore the hel-
icity cannot vanish.

The resolution to this apparent paradox lies in two ad-
ditional factors:

(i) The vector potential computed in Eqgs. (7) is deter-
mined only up to the gradient of a scalar function Vy
which leads to an additional helicity term f Vx-BdV.

(ii) For force-free fields satisfying Eq. (4), the field lines
lie on the surfaces a=const (provided «a is not globally
constant). This can be seen by taking the divergence of
Eq. (4) to obtain Va-B=0. Cowling’s theorem [18] then
tells us that these surfaces cannot be simply connected.

There is a theorem by Hopf [19] which states that the
torus and the Klein bottle are the only smooth, compact,
connected surfaces without boundary that can have a
nonsingular (nowhere vanishing) vector field. Nonsingu-
lar magnetic surfaces can therefore be expected to have
the topology of nested tori. If a is a constant, the field
can have more complicated topologies [20].

The solution given by Eq. (5) to the force-free field
equation can be given the topology of a torus by identify-
ing z=x=2z,. The means of evaluating the additional term
f Vx-BdV when the volume of integration is a torus has
been given elsewhere [21]. The helicity introduced by
this term is

H=[ Vx-BdV= [ V-(xB)dV= fav(XB)~dS

+ s [xB-d=,, (8)
1

where [x] is the jump across =, (see Fig. 2). Since the
bounding surface of the torus is a magnetic surface, the
first term on the right-hand side vanishes. It can be
shown that [x] is constant on =,. Thus, I" can be taken
as bounding =, and [x] can be taken outside the integral.
Now for any two points p; and p,, the difference in the
value of the scalar function X is X,, —X,, = fﬁ?VX-dl. If
the path of integration is closed, but does not cross a cut
needed to make y single valued, the integral will vanish
by Stokes’ theorem. When the path of integration I" does
cross the cut X;, the value of the jump [x] is [22]



47 HELICITY, TOPOLOGY, AND FORCE-FREE FIELDS 3609

FIG. 2. The solution given by Eq. (5) can be given the topolo-
gy of a torus by identifying z==z;,. The domain V where the
force-free condition holds is interior to the torus. Since [x] is
constant on =,;, I' may be taken as bounding =,.

JrVx-dl= [;B-d2,=®;5 . Thus,
H=f21[X]B-d2,=frvx-dlleB-dzl=q>zlq>22. 9)

This example is interesting because the helicity explic-
itly depends on the topology. Without the gauge term,
and the multiply connected nature of the space, the heli-
city would vanish. It is also an explicit physical realiza-
tion of the exchange of twist helicity for link helicity.

APPLICATION TO SOLAR PROMINENCE MODELS

Consider a flux tube emerging from the sun’s photo-
sphere into the chromosphere to form an arch. In the
photosphere or below, material motions dominate and
the magnetic-field structure will be assumed to be un-
known; in the chromosphere, and above in the corona,
the gas pressure is small and the field must be approxi-
mately force free (it is common to consider potential
fields, where the current vanishes, to be force free with
vanishing «; linear force-free fields to be those with «
equal to a constant; and nonlinear force-free fields to be
those having a a function of position). The magnetic field
associated with a solar prominence is often modeled as a
twisted flux tube. Twisting can be introduced either by
photospheric twisting motions (due to Coriolis forces) at
the locations where the base of the arch enters the photo-
sphere [23], or by flux cancelation; i.e., by shear and con-
vergence along the neutral line separating two regions of
opposite magnetic polarity, followed by reconnection of
the field lines [24]. In either case, currents are introduced
that flow along the field lines in the force-free region.

Parker [16] has forcefully argued that one cannot ex-
pect to find in nature flux ropes with a structure more
complex than a more or less uniform twist across the ra-
dius of the tube. Henceforth, for purposes of discussion,
the force-free, uniformly twisted solution given by Eq. (5)
will be taken as an appropriate model for the magnetic
field associated with a solar prominence. The field in the
flux tube is confined by a pressure differential across its
boundary. Since the flux along the axis of the tube is con-
served, the decrease in the mean longitudinal field as the
tube is twisted leads to an increase in the radius of the

tube. Physically, for an axially symmetric solution such
as that given by Eq. (5) to be a reasonable approximation
to the twisted flux tube used to model the field associated
with a prominence, the aspect ratio (the ratio of the prin-
cipal to minor radius) of the prominence must be large.
Note also that the use of this solution to form a flux tube
of finite radius R means that there will be an additional
surface current needed to match to any potential field
that may be present for » > R.

Helicity in the prominence

Since the field configuration below the photosphere is
assumed to be unknown, it is clear that only relative heli-
cities in the sense of Berger and Field, where the field
below the photosphere is assumed to be the same for
different field configurations in the force-free region
above the photosphere, can be computed. For the uni-
formly twisted flux tube, A-B vanishes in the volume of
integration above the photosphere (the flux tube). Con-
sider now the relative helicity between a uniformly twist-
ed flux tube and a potential field (consistent with the ap-
proximation made here, simply a field along the axis of
the tube). By symmetry, A-B also vanishes for this field.
It is clear from the previous discussion that the nonvan-
ishing of the helicity depends on a gauge term and the
fact that the space consisting of the interior of the flux
tube and the region below the photosphere is multiply
connected.

Since, in the region below the photosphere, the fields of
the twisted flux tube and the untwisted one are assumed
to be the same, the vector potential for each can differ at
most by a gauge term Vy. This term can also be allowed
to absorb any gauge freedom in the region above the pho-
tosphere. Thus the relative helicity reduces to the right-
hand side of Eq. (9) and is consequently given by

AH=®; Oy . (10)

Here @ is the (conserved) flux within the tube and @5,

is the flux through the surface bounded by the arch and
the photosphere (Fig. 2 is applicable).

Magnetic energy contained in the prominence

Knowledge of the field configuration in the force-free
region is insufficient to determine the field energy. This
follows from the fact that H in the force-free relation, Eq.
(4), is indeterminate up to an arbitrary multiplicative con-
stant. It is, however, possible to compute relative ener-
gies. For example, one might be interested in the energy
difference between a twisted arch and a similar arch de-
scribed by a potential field. The solution of Eq. (5) again
gives an interesting example.

Consider the energy of a uniform field B, in an
untwisted cylindrical flux tube of radius R,. As the tube
is twisted the radius increases to R. Ignoring for the mo-
ment any contribution from surface terms, the magnetic
energy in the tube is



3610

2
1 2 2 __Bgmz R 2rdr
E=—| (Bf+B3)dV=
Lo fV z ¢ Ho fO (1+r2/a2)
B(ZJ 2 2,2
=—mza“In(1+R*/a”) . (11)
Ko

On the other hand, the axial flux in the tube is given by

R rdr

@ 2771;0]0 e
The energy per unit length of the tube is then (1/u()B®.
Since the axial flux is constant and equal to the original
flux BymR3, the energy contained in the volume of the
flux tube is independent of the twist. This does not, how-
ever, mean that energy cannot be stored in uniformly
twisted magnetic fields. Twisting the field introduces an
axial current density given by J=aH since the field is
force free. Uniformly twisting a flux tube then results in
a current along the tube that creates a magnetic field that
links the tube. Using the expressions given above for a
and H,, the current is

=Byma’ln(1+R%*/a?) . (12)

__4mBy (R rdr
1= f 2,.2\2
apg Yo (1+r“/a”)
2mBya
= (14+R%/aH) 7. (13)
Ho

Interestingly enough, there is a value of a that maxim-
izes the current. The conservation of flux implies that

2 02
(1+R2/a¥)=e 0" | (14)
The current can then be written as
2wB,a _R2 /42
1= (e TR (15)
Ho

Differentiating to find the extremum of the current I with
respect to a results in the trancendental equation

1—e V(1 +2/u2)=0, (16)

where u =a /R,. This can be solved numerically to yield
u =0.89. Using this value in the second derivative of the
current with respect to a confirms that the extremum is a
maximum. The value obtained for u falls into the stable
range given by Parker [16] as u = 0.5956.

In writing Eq. (11), the surface term was ignored. In
general, the expression for the energy is given by

E=}[ H(VXAdV+i[ (HXA)dS. (17

As has been shown above, the energy contained in the
volume of the flux tube is independent of twist. The first
term on the right-hand side of this equation will therefore
not contribute when computing the difference in energy
between a flux tube containing a potential field and one
having a uniform twist. For a simply connected domain,
the integrals in Eq. (17) are gauge invariant. When the
domain is multiply connected, the gauge term takes on a
physical significance. The surface term does not vanish
for the twisted tube, but represents the energy in the field
exterior to the domain of integration due to currents
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within the domain [21]. It yields the value J.I <I>22, where
I is given by Eq. (13) and <I>22 is again the flux through
3.

As was the case for helicity, introducing a uniform
twist into a flux tube does not increase the magnetic ener-
gy within the flux tube itself, but creates a current which
acts as the source for a field that links the tube. The am-
biguity as to whether the energy resides in the current or
the field is an old one in magnetostatics.

SUMMARY

While the helicity of a magnetic field can be interpret-
ed as a measure of the degree of linkage of the field lines,
it can also have a nonlocal character. The example of a
uniformly twisted, force-free flux tube was used to show
how this element of nonlocality represents a physical
manifestation of the exchange of twist helicity for link
helicity. In this example, the nonvanishing of the helicity
is explicitly due to a gauge term and the multiple con-
nectedness of the domain containing the field lines. Simi-
larly, the energy difference resulting from the twist de-
pends on a boundary term that represents the energy in
the link field.
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APPENDIX

There are several definitions of the Hopf invariant [25].
Perhaps the simplest, geometrically, is to consider a
sphere S° in R* given by the equation
x3+x3+x3+x3=1. Identify a point on this sphere
with two complex numbers (z,z,), where z, =x,+ix,
and z,=x;+ix,. Then the equation of the sphere is
Iz, 12+ 1z, 2= 1; ie., 3= {(2,2,)]]2, >+ 12, [*=1}.

The Hopf mapping m: $3—S? is given by
m(zy,2,)=2,/z, and

m(zy,2,)—[2Relz,2,) ,2Im(z,2,),|z,|*—|z,|*]1€S? .
(A1)

Now if A=e’?, 0=0=27, m(Az,, Az,)=mu(z,,z,). There-
fore, 7~ '(u)=S! for any u €S%. The Hopf mapping can
be considered to be the projection of the Hopf bundle,
i.e., of the locally trivial fiber space whose total space S°
has a base space S* and fiber S'. Given any two points
u,v €S?, the “circumferences” 7 Yu) and 7 Yv) are
disjoint and linked in S®. The classical Hopf invariant is
the linking number L(7~ Yu), 7 1(v)).

That 7~ Y(u) and 7~ (v) are disjoint and linked can be
readily seen by choosing, for example, # =(1,0,0) and
v=(—1,0,0,) in S? and using Eq. (A1) to obtain the addi-
tional relations 2z,Z,=1 for u and 2z,Z,=—1 for v.
These are satisfied, respectively, by

ei0 _ ei&
v2 '’

=z,=—= and z;=—2z,

V2 (A2)

Z;
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where z,,z, ES’. Visualizing the linkage is aided by us-
ing the stereographic projection IT: $*—R?, with the pro-
jection point, which will be chosen here to be
(0,0,0,—1)€S?, identified with the point at infinity. That
is,

i

x
&=

- 1+X4 ’ (A3)

where £; ER?, x; €S® and x,7 — 1. This results in

Ofr—!  Fmfa= cosf® —_ sinf
bk == s ne * 2T Vatsing
- 6 in6
O[7 " v)]: §1=‘§3=_‘—‘/—2-c?_ssin9 ; gzz_—‘/isjlsine )
(A4)

If these curves are plotted as a function of € in the mu-
tually orthogonal planes §;=={;, one obtains two dis-
joint and linked ellipses [26].
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